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almost identically in both the globally stable and unstable cases. The final results of the global stability
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1. Introduction

The so-called jet in cross-flow (JCF) refers to fluid that exits a
nozzle and interacts with the surrounding boundary layer flowing
across the nozzle. This case has been extensively studied both
experimentally [1-6], theoretically [7,8] and numerically [9-15]
over the past decades due to its high practical relevance. Smoke
and pollutant plumes, fuel injection and mixing or film cooling are
just a few applications. On the other hand, the jet in cross-flow
is considered a canonical flow problem featuring complex, fully
three-dimensional dynamics that cannot be investigated under
simplifying assumptions commonly applied to simpler flows. It
makes the JCF a perfect tool for testing numerical methods for
studying the stability of fluid flows and simulation capabilities.
Recent reviews on this flow configuration are given in Refs. [16,17].

In this work we concentrate on the incompressible flow with
the round perpendicular jet of constant diameter and characterise
the JCF by three independent non-dimensional parameters: the
free-stream and jet Reynolds numbers (Re,;a, Re;je+) and jet to free-
stream velocity ratio R, which is the key parameter here. The
major flow features are (see Fig. 1): the counter-rotating vortex
pair (CVP) in the far field, the horseshoe vortex placed upstream
of the jet orifice [18], and vortices shed from the shear layers
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caused by the interaction of the jet with the cross-flow. There
are other features observed at higher values of the cross velocity
ratio R, e.g., wake vortices [1] and upright vortices [14]. As the
ratio R increases, the flow evolves from a stable (and thus steady)
configuration consisting of a (steady) CVP and horseshoe vortex
(Fig. 2), through simple periodic shear layer vortex shedding (a
limit cycle; Fig. 16) to more complicated quasi-periodic behaviour,
before finally becoming turbulent. The breakup of the CVP due
to interaction with vortices shed from the shear layer is also
illustrated in Fig. 2 in Ref. [15].

Laminar-turbulent flow transition is a classical problem in
fluid mechanics. Initially motivated by aerodynamic applica-
tions, it is an important phenomenon in many other industrial
applications. Originally, hydrodynamic stability was studied by
means of linear stability theory investigating the behaviour of
infinitesimal disturbances in space and time around some ba-
sic flow state. In the so-called local analysis, the exponential
growth of linear perturbations is studied at each streamwise po-
sition and the distinction between local convective and abso-
lute stability is made [19]. This local treatment is legitimate for
parallel and weakly non-parallel flows, but many of the flow
configurations developing strong instabilities and eventually ex-
hibiting transition to turbulence (e.g. JCF) are strongly non-parallel.
Moreover, they belong to the open flow category, where fluid par-
ticles continuously enter and leave the considered domain. Such
unstable open flows require global analysis where the evolution of
perturbations is considered in the whole physical domain [20]. The
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Fig. 1. A sketch of the main vortical structures that may be identified in the jet in

cross-flow.
Source: Figure adopted from Ref. [15].

Fig. 2. Vortical structure of the base flow f]b for the JCF with R = 1.5 obtained with
SFD for mesh MS3 and N = 9. The steady CVP, shear layer and horse shoe vortex
are clearly visible. The vortical structure is presented using volume rendering of
the A, vortex identification criterion [39]. Highly negative values of A, are coloured
in yellow (vortex ‘cores’), and the regions of lower magnitude, i.e., negative value
closer to zero, are coloured in brown (vortex ‘edges’). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

global behaviour of the flow depends on the competition between
local instability and basic advection. The linear global modes are
the eigenmodes of the linearised Navier-Stokes operator. The re-
cent review of the work on global stability in the past years can be
found, e.g., in Theofilis [21].

The first linear global stability analysis of the JCF in a sim-
plified setup not including the pipe in the computational do-
main at R = 3 was presented by Bagheri et al. [13,14]. In this
work the pipe orifice was represented by the Dirichlet boundary
conditions. For this jet to free-stream velocity ratio the JCF was
found to be dominated by an interplay of three common instability
mechanisms: a Kelvin-Helmholtz shear layer instability, a possible
elliptic instability of the CVP, and a near-wall vortex shedding
mechanism similar to a von Karman vortex street. It was also
shown that the flow acts as an oscillator, with high-frequency un-
stable global eigenmodes associated with shear-layer instabilities
on the CVP and low-frequency modes resulting in vortex shed-
ding in the jet wake. This work was later extended to the wider
range of R € (0.55, 2.75) by Ilak et al. [15], focusing on transition
from steady to unsteady flow as R is increased. The first bifurcation
i.e., the appearance of the first unstable eigenmode, was found to
occur at R &~ 0.675, when shedding of hairpin vortices characteris-
tic of a shear layer instability was observed, and the source of this
instability (wavemaker) was located in the shear layer just down-
stream of the orifice. Results of linear stability analysis were con-
sistent with nonlinear direct numerical simulations (DNS) at the

critical value of R predicting well the frequency and initial growth
rate of the disturbance. It was also concluded that, based on lin-
ear analysis, good qualitative predictions about the flow dynamics
can be made even for higher values of R, where multiple unstable
eigenmodes are present. The authors pointed out, however, that
the critical value of R cannot be determined exactly due to sensi-
tivity of the results to changes in the domain length as well as to
the presence of the fringe region enforcing periodic boundary con-
dition (BC).

In the current study we follow Ilak et al. [15] focusing on the
transition from steady to unsteady flow and, using linear global
stability analysis, searching for the value of R at which the first
bifurcation occurs. The scope of this work is to study global stability
of the JCF focusing on the eigenmode sensitivity to the simulation
parameters. This way we test the numerical methods and identify
the major practical difficulties related to linear stability of this type
of complex flows.

However, as purely modal analysis is known to fail in predicting
the practically observed critical Reynolds number for transition to
turbulence in a number of systems [22-29], we apply in our studies
both modal and non-modal analyses. A classical example of such
a flow is the convectively unstable flat-plate boundary layer [30],
which behaves as broadband amplifier for incoming disturbances,
but is globally stable according to linear global analysis. However,
a global stability analysis based on the asymptotic behaviour of
single eigenmodes of the system does not capture all relevant
dynamics, and transition to turbulence at finite Re occurs due
to transient effects. Following Ref. [31] we investigate the linear
growth of perturbations in the JCF for a limited time, before the
exponential modal behaviour is most dominant, and determine an
optimal initial condition (initial condition yielding largest possible
growth in energy) adopting a time-stepper method.

This paper is organised as follows. Section 2 describes the
numerical methods used for modal and non-modal stability
calculations including a brief description of the employed codes. In
this section we also give details of computational setup. Section 3
is devoted to the global stability of the JCF. We discuss here
results obtained by DNS and linear modal analysis focusing on the
sensitivity of bifurcation point to various simulation parameters
and employed code. Results of non-modal analysis are presented
in Section 4 and the final discussion with conclusions is given in
Section 5.

2. Simulation setup and numerical method

We adopt the same computational setup as Ilak et al. [15],
modelling the interaction of a boundary layer with a perpendicular
jet exiting a circular pipe with diameter D = 345, where §] is the
displacement thickness at the inflow placed 9.375 - §j upstream
of the centre of the pipe orifice. In our calculations §} is used as
reference length unit. Following Ref. [15] we use both a laminar
cross-flow and jet inflow profile and, as the jet pipe is absent
in our simulations, an inhomogeneous (Dirichlet) BC prescribing
the inflow jet profile is employed instead. This is an important
limitation of the problem setup requiring, e.g., smoothing of the
jet profile by a super-exponential Gaussian function;

v(r) = V(1 —r?) exp(—(r/0.7)%),

where v is the wall-normal velocity, V is the peak jet velocity, and
r is the distance from the centre of the jet nozzle (X, Zjer), defined
as:

r = @/D)y (¢~ %e)? + (2 — Ze 2.

A full discussion on this choice of profile can be found in Refs.
[13,15].
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Table 1

Mesh parameters for different simulation setups. Simulations performed with
SIMSON use mesh MS1 with uniform resolution in x and z directions. Meshes
MS2-MS4 have nonuniform resolution dependent on polynomial order N and are
used in Nek5000 simulations. In this case the total number of elements (dependent
on L), mesh type (resolution in the wall vicinity) and polynomial order are given.
Both mesh types R1 and R2 keep highest (uniform) resolution in the vicinity of
the jet inflow, however, in R2 a single, unit height layer of elements next to the
wall is replaced by two layers of elements. This way the vertical resolution in
the wall vicinity is doubled. Each element consists of N + 1 x N +1 x N + 1
Gauss-Lobatto-Legendre points.

Mesh Ly Ly L, Mesh structure N
MS1 150 20 30 512 x 201 x 144

MS2 150 20 30 R1; 37440 elements 6,9
MS3 150 20 30 R2; 39520 elements 6,9
MS4 250 30 30 R1; 68640 elements 9,12

The flow is fully described by the dimensionless (in units of 5;)
pipe diameter D, cross-flow Reynolds number Ress = Usod5/v and
jet to cross-flow velocity ratio R = V /Uy, where Uy, and v are
free-stream velocity and the kinematic viscosity, respectively. We
have to mention here that there are a number of possible defini-
tions of the jet to cross-flow velocity ratio, based e.g. on the mass
flux, however, to be able to compare our results with Ilak et al. [15]
we follow in this work Ref. [ 13] using the peak jet inflow velocity
V to calculate R. The jet Reynolds number based on the jet velocity
and the jet diameter Rej; = VD/v is in our case a function of the
velocity ratio and cross-flow Reynolds number Reje; = RegsRD/Sg.
To be consistent with Ilak et al. [15] we set Uy, = 1, Re,ga = 165,
and choose R as 1.0, 1.4, 1.5 and 1.6. We list here only the key pa-
rameters of the setup and refer the reader to Refs. [13,15] for more
details.

The size of the computational domain and adopted resolutions
depend on the employed code and studied case. They are discussed
in the following sections, and the key mesh parameters used for all
simulations are summarised in Table 1.

2.1. Direct numerical simulations

As the adopted numerical method for both modal and non-
modal analyses is based on the time-stepper method, where the
matrix action on a vector is given by the linear DNS iterations, we
start our discussion from a short description of the employed DNS
codes. Both linear and nonlinear simulations are performed with
two different massively parallel DNS solvers for the incompressible
Navier-Stokes equations: SIMSON [32] and Nek5000 [33].

SIMSON was used in Refs. [13-15] for the JCF and is a fully-
spectral code well suited for stability computations. In this code the
wall-parallel directions are discretised using Fourier series and the
wall-normal direction using Chebyshev series. A major constraint
is the requirement for periodic BC in the streamwise direction
necessitating a fringe region for damping disturbances. The forcing
f in the fringe region [34] has the form

f =0T -, (1)

where A(x) is a smooth step function, ﬁF is the desired flow
solution in the fringe region (Blasius boundary layer in the studied
case) and 11 is the current velocity field. This damping in the fringe
region depends on the fringe length Lr and its strength, which
is related to the shape of the step function A(x) (see Ch. 4.2.2
in Ref. [32]). We use SIMSON to investigate the influence of
Lr on the stability results in nonlinear DNS while keeping the
forcing strength constant. The fringe parameters are adopted from
llak et al. [15] with varying Lr set to 15 (like in [15]), 45 and
75 in & units. As the fringe region reduces the useful part of
the computational domain, we doubled the length of the box as
compared to Ref. [15] setting its size to Ly = 150, L, = 20, L, = 30,

with the resolution of 512 x 201 x 144 spectral collocation points
in the streamwise (x), wall-normal (y), and spanwise (z) directions,
respectively (mesh MS1).

Nek5000 is a spectral-element code locally providing spec-
tral accuracy while allowing for complex geometries, however in
current work we limit ourselves to simple setup considered in
Ref. [15]. In the spectral element method (SEM) the governing
equations are cast into weak form and discretised in space by the
Galerkin approximation, following the Py — Py_; approach with
the velocity space spanned by Nth-order Lagrange polynomial in-
terpolants. In our studies we use Nek5000 to investigate the influ-
ence of resolution (polynomial order N = 6, 9 and 12), box length
(Ly = 150 and 250) and grid structure. Domain decomposition into
hexahedral elements is used to reduce resolution where it is not
needed. We keep the uniform resolution in the jet vicinity within 5
85 units from the orifice, and reduce it at larger distance by smooth
element stretching (resolution R1). In resolution R2 we double the
vertical resolution close to the wall. There are no periodic BCs in the
streamwise direction. We found our results to be dependent, how-
ever, on the outflow BC unless we set a sponge layer at the outflow
in addition to making the computational domain longer to reduce
reflections from the boundary. The forcing function for the sponge
was adopted from the fringe in SIMSON (Eq. (1)), and the sponge
length Ls was set to 25 and 35 units for L, = 150 and 250, re-
spectively. Nek5000 was also used as time-stepper for solving the
linearised Navier-Stokes equations in modal and non-modal linear
stability analyses. In the case of modal linear stability analysis and
Ly = 250 we increase the height of the computational domain to
L, = 30 to ensure the CVP fit within the box. The mesh parameters
are summarised in Table 1.1t gives the mesh dimensions (Ly, Ly, L,),
vertical mesh resolution next to the wall (R1 versus R2 resolution),
total element number (dependent on L,) and adopted polynomial
order N.

More detailed descriptions of the implementation of Nek5000
can be found in Fischer et al. [33].

2.2. Modal analysis

Modal stability analysis is the classical method of linear
hydrodynamics stability investigating exponentially growing or
decaying disturbances. It allows to compute the critical value
of a given parameter, for which a single exponentially growing
disturbance exists. In the linear theory for global analysis those
disturbances, the so-called linear global modes, are associated with
eigenmodes of the linearised Navier-Stokes operator (LNS) [35]. It
allows to determine several characteristics: the parameters (e.g. R)
at which the flow first becomes unstable, and the frequencies w;,
growth rates w; and spatial structure of the linear perturbations
(eigenmodes).

We consider the incorypressible Navier-Stokes equations lin-
earised about a base flow Uy, in non-dimensional form with i, p and
Re56 being velocity and pressure perturbations and the Reynolds
number, respectively,

3ﬁ+* vU
i
at b
+L7b Vu
1 -
— Vii+Vp=f ing, (2)
Re(;*
V.i=0 ing, (3)
=0 onds,, (4)
- 1 __ .
pn—R Vu-n=0 onads2,. (5)
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The two last equations are the boundary conditions (BCs) on the
surface of the computational domain £2. Subscripts v and o stand
for regions where either velocity (Dirichlet) or outflow Bgs are
specified, and 1 denotes the outward normal. The forcing f usu-
ally vanishes inside £2, but may be used for sponge/fringe layers
at inflow/outflow boundary as given by Eq. (1). In our calculations
we replace outflow BC (Eq. (5)) with velocity BC i = 0 applied on
052,.Itis necessary to keep direct and adjoint LNS consistent in the
non-modal analysis (Section 2.3). Note that this choice of BCs can
change significantly the growth rates of the weaker modes leaving
however unchanged the strongest ones. The dependency of the op-
erator spectra on the applied BC for the flow past circular cylinder
case is discussed in Peplinski et al. [36].

The eigenvalue problem is then constructed rewriting the LNS
equations in operator form

U = Al
and assuming
0%, t) = u(X) exp(—iot),

where u(x) is the global mode and w = w, + iw; its complex
eigenvalue. For general 3D flows, the size of the matrix A prohibits
its explicit construction, so we adopt special matrix-free methods
based on time-steppers [37,13], where the action of A on the vector
i can be calculated. This method is an iterative technique based
on orthogonal projection of A onto a lower-dimensional Krylov
subspace, in which the Arnoldi algorithm is applied and the Krylov
subspace is constructed using snapshots taken from the evolution
of the flow field 4. In our implementation we use the implicitly
restarted Arnoldi method (IRAM) from the ARPACK library [38]. We
solve for the generalised eigenvalue problem

Au = —iwBu,

where B is the mass matrix. It allows us to simplify the treatment of
the duplicated values of the velocity field at the element faces, and
to get the exact value of the inner product using correct weights
applied in the orthogonalisatjon step.

To obtain the base flow U, (Fig. 2) one has to find the steady
state solution of the nonlinear Navier-Stokes equations, which in
many of the considered cases is unstable, in particular for strongly
convectively unstable flows (e.g. JCF). We compute the base flow
using selective frequency damping (SFD) [40], which damps the
oscillations of the unsteady part of the solution using a temporal
low-pass filter by setting the forcing

f=—x@—-w
in the whole computational domain £2, where 1i is the flow solution

and w its temporally low-pass-filtered counterpart obtained by a
differential exponential filter

W= (1 — b)/A.

In our simulations we set x = 0.6 and A = 1.91. A good indi-
cator of convergence is the amplitude of the forcing e = |(u —
W) || / L2votume, Which in all modelled cases reached 10~1°, It is con-
sider63b1y lower than the tolerance used for eigenvalue calculation
(107°).

Detailed description of the implementation in Nek5000 and
validation on the number of flow cases can be found in Peplinski
et al. [36].

2.3. Non-modal analysis

The study of linear optimal disturbances is a well established
technique to identify the initial condition leading to the largest

growth of the disturbance at finite time. We look for the pertur-
bation ii(t = 0) which leads to maximum energy (ui(T), u(T)) at
time T, with (-, -) being the inner product. This problem is equiva-
lent to solving the eigenvalue problem

Ati(0) = exp(ATT) exp(AT)1i(0), (6)

where exp(A'T) exp(AT) is the composite of the forward and
adjoint propagators, and A is the linearised Navier-Stokes oper-
ator. Its adjoint A" operator is defined by the property (iif, Au) =
(Atut, 1) and is written as

aut o
s (VU U

d
—Uy, - V'
1 o or 2
+— V254 vpi =F ing, 7)
R653

V-ul=0 ing, (8)
it =0 onagn,, (9)
o7+ - Vil i = (U, - R’ ondg,, (10)

656

where " and p' are adjoint perturbations. Notice the change of
sign in the equations and the fact that outflow BCs are inhomo-
geneous. However, Nek5000 does not support general inhomo-
geneous BC as given above. Therefore, to keep direct and adjoint
problems consistent we set homogeneous Dirichlet BC on all d42.
To avoid reflections we use a sponge layer at the inflow and out-
flow boundaries.

The largest eigenvalue can be found iteratively by (matrix-free)
power iterations of Eq. (6), where the state is first marched forward
in time with the standard numerical solver (direct propagator)
and then backward with the corresponding adjoint solver (adjoint
propagator). The initial condition is white noise and the procedure
is repeated until the assumed convergence criterion for ||, (0) —
,_1(0)| is reached, where n is the iteration number and both
11,(0) and 1i,_1 (0) are rescaled to the same energy level. For a more
detailed discussion and description of implementation in Nek5000
see Ref. [41].

3. Global stability

To investigate the global stability of the JCF and the dependence
of the critical inflow ratio R value on the various simulation
parameters we performed a number of nonlinear DNS using
SIMSON and Nek5000, and linear global stability analysis with
Nek5000. Results are discussed in the following sections.

3.1. Nonlinear direct numerical simulations

The study results pertaining to the sensitivity to damping in the
fringe for R = 1 were performed with SIMSON and are presented
in Fig. 3. The figure shows the energy of a single, most dominant
Fourier component of the streamwise velocity component inte-
grated over y-z plane and plotted as a function of streamwise po-
sition x. It was calculated by performing the Fourier transform in
time at every spatial position (x, y, z) on eight snapshots of the ve-
locity field saved within a local temporal window (t — T,/2,t +
T,/2). T, is here the period of the oscillations found in the sig-
nal of the streamwise velocity component of a probe located 15
units downstream of the pipe centre. Continuous, dashed and dot-
ted curves give the energy distribution at time t = 500 and cor-
respond to different fringe lengths Ly equal to 15, 45 and 75 units,
respectively. Time is counted from the beginning of simulation and
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Fig. 3. Energy as a function of streamwise position of the single dominant Fourier
component for R = 1 and different fringe lengths Lr equal to 15 (continuous line),
45 (dashed line) and 75 (dotted line) units. Simulation results of SIMSON obtained
on mesh MS1.

the jet centre is marked by the vertical line. The first simulation was
performed with Lr = 15 and Blasius boundary layer as initial con-
dition, and run up tot = 880, when the probe signal saturated. This
state provided the initial conditions for the two other runs. There
are three main regions located downstream to the pipe orifice,
corresponding to exponential spatial growth, nonlinear saturation
and damping in the fringe region. The length of the fringe layer is
clearly visible. For Lr equal to 15 and 45 units the signal saturates
reaching an approximate steady state, and only for the longest
fringe the energy maximum decreases continuously with time.
This shows the JCF at R = 1 to be a globally stable noise amplifier.

According to Ilak et al. [15] the JCF for R = 1 appears globally
unstable, however, closer examination of our results shows this
flow to be in fact convectively unstable, and the misinterpretation
of the instability mechanism stems from insufficient damping in
the fringe. The temporal amplitude evolution of the simulation
with the shortest fringe features a short phase of approximately
exponential decay (after an initial transient phase). This phase ends
when the signal from the fringe reaches the jet orifice after re-
entering the domain, and triggers an instability. It is because the
damping in the fringe region (of the order of 10°) is too weak
compared to the growth rate in the domain leading to nonlinear
saturation of the signal. Similar conclusions can be drawn from the
second run (Lr = 45; Fig. 3), where the nonlinear saturation on the
energy plot is still visible. To achieve sufficient damping a fringe
with at least Lr = 75 (50% of the computation domain) is required.
In this case the signal amplitude decays exponentially and the
saturation is no longer visible after 500 time units. However, even
in this case the decay rate after t = 400 is relatively low leaving a
considerable amount of energy in the strongest Fourier mode after
t = 1500. This shows that simulation methods relying on periodic
domains to be unsuited for flow cases with considerable spatial
growth rates unless extreme care is taken to ensure sufficient
damping in the fringe region. To employ such methods one has to
ensure the fringe damping is larger than the expected (physical)
spatial growth in the domain to make perturbations re-entering
the domain not relevant for the flow dynamics (see as well
Ref. [42]).

Due to these problems with the periodic setup all subsequent
runs are performed with Nek5000, which allows inflow/outflow
BCin streamwise direction. Nevertheless, even in this case a careful
treatment of outflow BC was found to be crucial. In the presented
simulations, the outflow BC Eq. (5) together with sponge layer was
used.

To investigate the sensitivity to the treatment of the outflow
BC we performed a number of simulations varying the velocity

0.015 . ; ; ; ; ; ;
oolf A 1
0.005F .
- + ® )
3
Ok 4
X
-0.005} g
P
-0015 6 7 8 9 10 11 12 13
N

Fig.4. Growth rate of the strongest mode as the function of polynomial order N for
different mesh structures. Symbols + and x present results of the modal stability
analysis for R = 1.5 and meshes MS2 and MS3 respectively. Symbols A and O
show results of modal stability analysis for R = 1.6 and meshes MS3 and MS4.
Simulations using Nek5000.

ratio R, box length L,, mesh structure, polynomial order N and
the noise level used to trigger the instability (selected setups are
summarised in Table 1). For all studied cases there is an initial
transient phase followed by a short phase of nearly exponential
decay of time-dependent oscillations. Depending on the domain
size and if additional noise was added or not, this phase ends
with a rapid increase of disturbance amplitude followed by
exponential decay/saturation, or with the slow growth of low-
amplitude oscillations. A careful study of numerical convergence
was necessary to determine the minimal domain length and
sufficient resolution for the simulations. We found N = 9 and
L, = 150 to be adequate to achieve numerical convergence. Those
runs show the critical velocity ratio R, at which the first bifurcation
occurs, to lie in the range between 1.5 and 1.6.

3.2. Linear modal analysis

Here we present results of the linear global stability analysis,
obtained using Nek5000 in an inflow-outflow setting. We start
our discussion from the numerical convergence tests performed on
meshes MS2 and MS3 (L, = 150) with polynomial order N = 6 and
9 for R = 1.5, and on meshes MS3 (Ly = 150) and MS4 (L, = 250)
with N = 6,9 and 12 for R = 1.6 respectively. Runs performed
on mesh MS4 were used to confirm numerical convergence of our
results with respect to box length and polynomial order.

Selected results of the convergence tests are shown in Fig. 4
presenting the growth rate of the strongest mode as a function
of N and meshes. Symbols + and x present results of the modal
stability analysis for R = 1.5 and meshes MS2 and MS3, respec-
tively. Symbols A and © show results of modal stability analysis for
R = 1.6 and meshes MS3 and MS4. In all studied cases increasing
resolution decreases the growth rates of all the modes (including
the strongest one) until convergence is reached. The importance of
high resolution is clearly evident. The dependency of the results on
the domain length L, was investigated with meshes MS3 and MS4
atR = 1.6 and N = 9. Both growth rates match each other prov-
ing L, = 150 to be sufficient for numerical convergence. A final test
was performed on mesh MS4 atR = 1.6 and N = 12, showing that
the previously discussed results were really converged.

InFig. 5 we present the converged spectra of the JCF for bothR =
1.5 and 1.6 computed on mesh MS3 with N = 9. As the eigenvalues
w of the operator A come in complex pairs, the resulting spectra
(growth rate w; versus frequency w, ) are symmetric with respect
to o = 0 and we utilise the negative and positive w, parts
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Fig. 5. The spectra of the JCF for MS3 mesh, N = 9 and different velocity ratios.
As the spectra are symmetric with respect to w, = 0 we utilise the negative and
positive w, parts to compare different cases. The plot gives spectra for R = 1.6
(negative w,, d) and R = 1.5 (positive w;, O).
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Fig. 6. Modulus of the strongest, complex eigenmode of the direct (far field)
and adjoint (pipe orifice) operators. The plot presents volume visualisation of the
modulus of the streamwise velocity component cut along the symmetry plane.
Only values larger than 1% of the maximum modulus are shown. The pipe orifice
is marked by an arrow and the sponge region starts at x = 120.

to compare the two different cases. Comparison of both spectra
confirms the critical velocity ratio to lie in the range between 1.5
and 1.6.

Fig. 6 shows the modulus of the streamwise velocity component
of the strongest eigenmodes of the direct (far field) and adjoint
(pipe vicinity) operators for R = 1.5 and N = 9. The pipe orifice
is located at x = 0 and the modes’ maxima are normalised to
unity. The colour scale is logarithmic and all points with values
smaller than 1% are made transparent. This illustrates strong
spatial variation of the eigenmodes. The total growth of the direct
mode (ratio of the maximum to the value at the pipe orifice) is of
order 10°. The visible strong streamwise separation of the direct
and adjoint global modes is induced by the base-flow advection
and is a signature of non-normality of the linearised operator. This
is important since such a high degree of operator non-normality
leads to great sensitivity of the corresponding eigenvalues [20]. It
is also shown that, as a result of non-normality, the perturbation
energy may experience strong transient growth even though the
flow is globally stable.

4. Optimal perturbations

In this section we discuss results of linear optimal disturbances,
which is a well established technique to identify the initial
condition leading to the largest growth of the disturbance at finite
time.

Our simulations were performed on the fine mesh MS3 (L, =
150) with polynomial order N = 9, optimisation time T = 77 for
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Fig.7. Energy evolution for the transient growth of the optimal disturbance. Upper
and lower plots correspond to the stable (R = 1.5) and unstable (R = 1.6) cases,
respectively. Continuous and dashed curves (on both plots) represent the closed
cycle with energy growth and decay in the direct and adjoint phases respectively.

R = 1.5 and 1.6. The initial state 11(0) for each of the step (direct
and adjoint) was normalised (i1(0), 1i(0)) = 1, and the assumed
convergence criterion was 5 x 107>, reached after 36 iterations. To
keep the direct and adjoint problems consistent we apply sponge
layers together with homogeneous Dirichlet BC both at the inflow
and outflow in the flow. An important advantage of the non-modal
analysis is its insensitivity to the outflow BC, as the travelling wave
packet for adopted value of the optimisation time never reaches
the outflow. The results are presented in Figs. 7-12.

Fig. 7 presents the energy growth with time for direct and
adjoint phases for stable (R = 1.5; upper plot) and unstable (R =
1.6; lower plot) cases. The energy evolution is similar in both cases
and its final value differs only by a factor of 2 (E = 8 x 10'! and
1.6 x 10" for R = 1.5 and 1.6 respectively) showing the transient
growth to be only weakly dependent on R. The calculated value
of A in Eq. (6) is 0.9972 and 0.9964 for R equal to 1.5 and 1.6,
respectively.

Figs. 8 and 9 present a comparison of the optimal initial
conditions for the streamwise velocity component u,(0) and
corresponding final wave packet u,(T) for stable R = 1.5 and
unstable R = 1.6 cases, respectively. Angled and top views are
shown. As both the optimal initial conditions and wave packets
are symmetric with respect to the grid symmetry plane (y = 0)
we plot results of both simulations on a single frame placing the
stable case in front/lower part of the plot. The maximum value of
all the functions is normalised to unity, and the plotted isosurface
corresponds to 0.2. The optimal initial condition resides at the
foot of the CVP and consists of a number of the backward titling
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Fig. 8. Comparison of the optimal initial conditions for the stable (front, R = 1.5)
and unstable (back, R = 1.6) cases. The maximum value of both functions is
normalised to unity, and the plotted isosurface corresponds to 0.2. Angled and top
views are presented.
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Fig.9. Comparison of the resulting wave packet of the optimal disturbance for the
stable (front, R = 1.5) and unstable (back, R = 1.6) cases. The maximum value of
both functions is normalised to unity, and the plotted isosurface corresponds to 0.2.
Angled and top views are presented. Two strongest local maxima are marked MX1
and MX2 (compare Fig. 10).

structures that develop into a growing wave packet propagating
up the CVP. The structures visible in the wave packet correspond
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Fig. 10. Distribution of the cross-stream integrated energy E,, of the wave packet
as a function of the ray velocity (x — xo)/t for different times t. Thin continuous
(lowest), long-dashed, short-dashed and dotted (highest) curves correspond to
t equal to 18.75, 37.5, 56.25 and 75, respectively. The energy was re-scaled for
consistency with Fig. 14. Vertical lines give the velocities of the leading (right)
and trailing (left) edges of the wave packet. The continuous thick curve shows the
position of the estimated maximum of the envelope of E,,. Two strongest local
maxima at time t = 75 are marked MX1 and MX2 (compare to Fig. 9). Data from
linear simulation performed at R = 1.5.
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Fig. 11. Spatio-temporal diagram of the local maxima of E,, (+). The positions of
the leading and trailing edges of the wave packet are marked by the dotted and
dashed lines, respectively. The continuous curve gives the position of the estimated
envelope maximum. Linear simulation performed at R = 1.5.
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Fig.12. Cross-stream cut through the base flow and the wave packet at streamwise
position x = 38.7. The contour plot gives the distribution of the base flow
streamwise velocity component, and the grey scale plot shows the energy of the
perturbation at the wave packet maximum MX1 at time t = 75. Linear simulation
performed at R = 1.5.
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Fig. 13. Energy evolution for the transient growth of the optimal disturbance at
R = 1.5 for the linear case (continuous curve) and the nonlinear DNS, in which
the optimal disturbance was added on top of the steady base flow. Two nonlinear
DNS cases are presented: Upp = 10> (dashed curve) and 10~* (dotted curve).
The interpolated streamwise maximum of E,, is plotted as a function of time. For
consistency with Figs. 10 and 14 the energy was re-scaled to 1.0 at time t = 15.75.

to the local energy maxima presented in Figs. 10 and 11. The
two strongest maxima located at x = 38.7 and 42.3 are marked
MX1 and MX2. The alignment of the wave packet with the CVP
in the base flow is clearly visible in Fig. 12 presenting the two-
dimensional z-y cut at maximum MX1 through the base flow and
the wave packet at t = 75. Both the optimal disturbances and
wave packets for stable and unstable cases are almost identical.
They are, however, slightly shifted with respect to each other due
to different shape of the base flow. The wave packets differ also in
their wavelength, which is slightly shorter for the stable case.

The evolution of the wave packet is also depicted in Figs. 10
and 11. Fig. 10 presents the spanwise fluctuation energy integrated
over cross-stream plane y-z for a given streamwise position x. The
integrated energy is plotted as a function of the ray velocity (x —
Xo)/t, where Xg is an initial position of the perturbation. Horizontal
curves give the time evolution of E,, starting from t = 18.75
(lowest curve) and ending at t = 75 (highest curve). The vertical
lines give the propagation speed of the leading (right) and trailing
(left) edges equal to 0.925U, and 0.0075U, respectively. The
continuous thick, vertical curve in the middle shows the position
of the estimated maximum of the E,, envelope X;q. It is defined as
the maximum of the parabola connecting the highest local energy
maximum with its two neighbours. It should be noted here, that
in the linear case the perturbation envelope could be computed
by the Hilbert transform performed in the streamwise direction.
However, this transform cannot be applied to the nonlinear DNS
results (see Fig. 14), and for consistency we estimate the maximum
position by parabolic interpolation in both cases. Fig. 11 gives the
spatio-temporal diagram of the E,, local maxima (+), interpolated
maximum position X (thick continuous curve) and the leading
and trailing edges (dotted and dashed lines).

The amplitude growth of the oscillations between leading and
trailing edges is clearly visible. At the same time, the wave packet
is spreading in the streamwise direction and more and local Ey,
maxima emerge. The trailing edge velocity is small but positive,
confirming the JCF at R = 1.5 to be convectively unstable. The
plot of the interpolated streamwise maximum of the perturbation
energy integrated over cross-stream planes as a function of time
(continuous curve in Fig. 13) gives the growth rate of the most
unstable waves travelling with a group velocity of about 0.5U.
It is interesting to note that the maximum is in fact slightly faster
than the individual wave maxima travelling with a local phase
velocity.
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Fig. 14. Distribution of the cross-stream plane integrated energy E,, as a function
of the ray velocity (x — xg)/t for the nonlinear DNS performed at R = 1.5 and
Uop = 10*. For full description see Fig. 10.

Fig. 12 presents the streamwise velocity contour plot for the
nonlinear base flow, and the energy of the wave packet at the
maximum MX1 (compare Figs. 9 and 10) in the cross-stream plane
at the streamwise position x = 38.7. The wave packet is aligned
with the shear layer surrounding the CVP and has a varicose
symmetry when viewed from top (x-z plane). This suggests the
instability to be of inviscid inflectional type triggered by the
regions of high vertical shear on top of the CVP.

In addition we performed the nonlinear DNS, in which the
rescaled optimal disturbance added on top of the steady base
flow is used as initial condition. The control parameter is here
the initial maximum value of the optimal disturbance velocity Upp
rescaled in our simulations to 107> and 10~*. The simulations
were performed on mesh MS3 for N = 9 and the velocity ratio
R equal 1.5 and 1.6. The velocity perturbation in nonlinear DNS is
defined as the difference between the actual value of the velocity
and the steady base flow at the same location. The comparison of
the perturbation energy growth at R = 1.5 for the linear simulation
and two DNS with Upp = 107> and 10~ is presented in Fig. 13.
To match different curves the computed energy is re-scaled to 1.0
at time t = 15.75. The initial energy evolution is identical for
all the simulations, however, the nonlinear DNS finally saturate at
around 4- 10~3 (non-rescaled value). Fig. 14 presents the spanwise
fluctuation of the perturbation energy integrated over cross-
stream plane y-z for a given streamwise position x. The phases of
the initial linear evolution followed by the nonlinear one are clearly
visible (saturation for larger times, compare to Fig. 10). Another
manifestation of nonlinearity is an apparent destabilisation of the
velocity field at ray velocities lower than the trailing edge and
higher than the leading edge velocities of the linear wavepacket,
respectively. This corrugation of the wavepacket edges, seen as an
apparent energy increase in Fig. 14 for low and high velocities, is
a transient phenomenon ending at time about t = 120 and it is
difficult to interpret this as nonlinear absolute instability discussed
by Chomaz [43]. Note that for the zero velocity ray x = x, the
nonlinear transient energy increase is followed by exponential
decay; yielding nonlinear absolute stability.

The evolution of the time-dependent amplitude of a single
Fourier component in the signal of the velocity probe (located 15
units downstream from the jet centre) for the DNS with Ugp =
107> is presented in Fig. 15 (continuous and dashed curves cor-
respond to R = 1.5 and 1.6, respectively). The chosen (temporal)
Fourier component is the most dominant one in the flow, and its
amplitude at time t is calculated by projection of the signal on sine
and cosine functions within the window (t — T,/2, t + T,/2) (T,
being the component period). The initial amplitude development
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Fig. 15. Temporal evolution of the disturbance amplitude for the transient growth
of the optimal disturbance in the nonlinear DNS. Continuous and dashed curves
correspond to the stable (R = 1.5) and unstable (R = 1.6) cases, respectively.

Fig. 16. Comparison of the asymptotic fate for the optimal disturbance added on
top of the base flow in the nonlinear DNS. Upper and lower plots correspond to the
stable (R = 1.5) and unstable (R = 1.6) cases, respectively. The plots show the
vortical structure of the flow at time t = 630 after the disturbance was added using
volume rendering of the A, vortex identification criterion.

is identical both for stable and unstable cases, however the final
(asymptotic) fate is consistent with modal analysis.

Snapshots from the nonlinear simulations showing the vortical
structure of the flow at time t = 630 can be seen in Fig. 16.
The optimal disturbance was added to the base flow and various
features of the flow are visualised using volume rendering of the A,
vortex identification criterion [39]. The colour map and the transfer
function for the volume rendering are chosen so that the regions of

highly negative values of A, are coloured in yellow (vortex ‘cores’),
and the regions of lower magnitude, i.e., negative value closer to
zero, are coloured in brown (vortex ‘edges’). In the stable case
R = 1.5 the CVP are clearly visible and almost time independent.
For the unstable case R = 1.6 we can see the limit cycle with the
CVP broken down into a series of hairpin vortices characteristic of
a shear layer instability. They are similar to the hairpin vortices
observed by Ilak et al. (see e.g. Fig. 2 in Ref. [15]).

5. Discussion and conclusions

In the current work we performed a stability analysis of the
jet in crossflow (JCF) testing two numerical methods applied for
stability computations. We focused on the calculation of the critical
velocity ratio R at which the first bifurcation (transition from
the steady to unsteady flow) occurs. We performed a number
of simulations using different numerical methods and codes,
namely a fully spectral (Fourier-Chebyshev) and spectral element
discretisation (SEM). We find the JCF to be so sensitive to the
simulation parameters and setup that the critical velocity ratio
is easily influenced by the numerical setup. In particular we
found that methods based on streamwise Fourier decomposition
to be not well suited for the present case which is dominated by
considerable disturbance growth through the domain. The periodic
boundary conditions (BCs) in the streamwise direction together
with a fringe region may provide insufficient damping and can
thus significantly change the flow dynamics. Even for codes with
inflow/outflow BC we demonstrate the sensitivity of the modal
stability analysis to the grid resolution, the location of the outflow
and thus to the length of the computational domain.

This great sensitivity of the eigenvalue at the bifurcation point is
a manifestation of strong non-normality of the evolution operator,
which is characteristic to open ﬂows and is mainly related to
downstream base flow advection Uy, - Vi1 in the linearised operator.
The degree of the operator non-normality can be measured by
the scalar product between the adjoint and direct global modes
and can be seen as streamwise separation between the adjoint
and direct modes (Fig. 6). The strong non-normality leads to
abrupt bifurcation and makes the global eigenvalue spectrum not
a robust quantity, as small perturbations (e.g. external forcing,
noise, round-off and other discretisation errors) can destabilise or
stabilise the flow. That is why the first bifurcation point for the
JCF is difficult to determine both numerically and experimentally.
Our highest resolution runs performed in the longest (L, = 250)
computational domain show the critical velocity ratio to lie within
the range R € (1.5, 1.6). We have to stress that this computational
domain is about 10 times larger than the dynamically significant
region, as the overlap of the strongest direct and adjoint global
modes (the wavemaker) is located within 25 units from the jet
orifice. Note that the cited value for the bifurcation relates to the
jet modelled as a steady inhomogeneous Dirichlet condition on the
plate surface.

Concepts developed for linear non-normal operators can be
also used to describe other types of behaviour of open flows like
transient growth. We computed the optimal disturbance using the
direct and the adjoint operator and find its growth (of the order
102 within the domain) and shape robust and almost identical for
both stable (R = 1.5) and unstable (R = 1.6) cases. It is consistent
with the linear theory of non-normal operators, where, in the case
of strong non-normality close to the global instability threshold,
the energy of the perturbation can undergo large transient growth
inversely proportional to the scalar product between the adjoint
and direct global modes. This non-modal analysis confirmed our
previous results, showing the JCF at R = 1.5 to be convectively
unstable. On the other hand the small value of the trailing edge
velocity 0.0075U,, suggests the critical value of the velocity ratio
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R to be close to 1.5. We also found the instability to be of inviscid
inflectional type triggered by the regions of high vertical shear on
top of the counter-rotating vortex pair (CVP).

Prediction of both modal and non-modal linear analyses is
consistent with our converged nonlinear DNS simulations, where
the perturbation undergoes first large transient growth which is
followed by exponential growth or decay related to the asymptotic
fate related to the growth rate associated with a particular global
mode. The modes give good qualitative description of the flow
dynamics showing both the harmonic amplifier behaviour and the
associated transient growth of initial perturbations to be related
to the special non-normality of the linear evolution operator
associated with open flows.
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